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The problem of propagation of inhomogeneous waves in anisotropic porous layered
medium is studied using transfer matrix. Firstly, transfer matrix for an anisotropic porous
layer is derived. Biot’s poro-elastic theory is incorporated to model the acoustics of
anisotropic porous layer. The interface between porous layer and elastic half-space is
considered as imperfect and modified boundary conditions are applied for this more
realistic situation. The theory of transfer matrix is used to derive the analytical expression
for the surface impedance. Numerical computation of results is done for different degrees
of bonding in the low as well as high-frequency range. In the first case, which is relevant to
geophysical studies, the surface impedance is predicted for low-frequency range and surface
impedance for second model is computed in high-frequency range. It is observed that loose
bondedness is accompanied by the loss of energy at the interface. The technique of transfer
matrix is utilized to compute the surface impedance in both cases. The role of surface
impedance in seismological studies and in the study of composites is discussed.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Because of its practical importance in various fields such as earthquake engineering, soil
dynamics, geophysics, etc., much attention is given to the wave propagation in fluid-
saturated porous media. Biot [1, 2] developed the theory of plane wave propagation in
saturated porous media in his two classic papers, which still dominates the field. Nagy et al.
[3] studied the slow wave propagation in air-filled porous materials and natural rocks.
Buckingham [4,5] studied the wave propagation in consolidated and non-consolidated
marine sediments and established the expressions for wave speeds and attenuation.

Studies of propagation of elastic waves in layered porous media have long term of
interest to researchers in the field of geophysics, acoustics and non-destructive evaluation.
Plane wave propagation in layered porous media at normal as well as oblique incidence is
studied by Allard et al. [6, 7]. Lauriks et al. [8] used the method of transfer matrix in the
study of plane wave propagation in layered media. Adler [9] applied the matrix method to
study acoustic waves in multilayers. Practically, saturated porous materials are anisotropic
due to bedding, compaction and presence of aligned microcracks. Anisotropy may have
significant effects on wave characteristics in layered media. Nayfeh [10, 11] studied the
general problem of elastic wave propagation in multilayered anisotropic media using
transfer matrix. Badiey et al. [12] applied propagator matrix method for plane wave
reflection from inhomogeneous anisotropic poro-elastic seafloor. Potel and de Belleval [13]
studied the propagation of waves in an anisotropic periodically multilayered medium.
Rayleigh waves on the surface of transversely isotropic liquid-saturated porous layered
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medium was studied by Sharma et al. [14]. They found that existence and speed of
Rayleigh waves is affected by transverse isotropy of considered medium. Schmitt [15]
investigated the properties of the modes generated by multiple sources in a fluid-filled
borehole embedded in foundations which include transversely isotropic poro-elastic layers.

Usually, perfect bondings, which ensure continuity of all field variables, between the
layers are encountered. But in some elastodynamic problems, the bonding between layers
may be imperfect which is a reasonable assumption for layered media including porous
layers. The usual continuity conditions are inadequate to describe the wave interaction
with such an imperfect interface. Vashishth et al. [16] presented modified boundary
conditions at imperfect interface between elastic half-space and poro-elastic half-space.

The acoustical properties of fluid-saturated, homogeneous and isotropic porous
materials are completely specified when characteristic impedance and wave number, or
two independent properties derived from them, e.g. complex density and complex sound
speed are known. Thus, it is of interest to be able to determine experimentally and
analytically the wave number and the characteristic impedance of homogeneous isotropic
porous media [17]. The study can also be useful in many types of sound absorbing
materials, which include for example glass fiber, polymeric fibrous materials and various
types of foams.

In this paper, reflection and transmission of waves in a layered media have been studied
through a physical quantity named surface impedance. The transfer matrix for anisotropic
poro-elastic solid layer has been obtained analytically. Two different models are
considered for the study of surface impedance with the use of transfer matrix so obtained.
The first one consists of anisotropic poro-elastic layer between fluid and elastic solid half-
space and the second one has two anisotropic porous layers under the fluid half-space. To
be more close to realistic situations, the boundary between porous layer and elastic
substratum, in general, is being considered as imperfect boundary and boundary
conditions have been modified appropriately. The closed-form expression of acoustic
surface impedance, in compact and convenient form, is obtained in both cases. Thus the
use of transfer matrix saves a lot of computational time and enhances the efficiency of
computer codes for numerical computation as the matrix notation suggests a systematic
computational procedure, which greatly facilitates the computation.

2. BASIC EQUATIONS

Following Biot [1], the equations of motion for a porous medium are

tij;j ¼ r .uui þ rf
.WW i ði; j ¼ 1; 2; 3Þ;

� ðpf Þ;i ¼ rf ui þ cirf Wi=b
0 þ FbiWi; ð1Þ

where tij is the stress tensor, pf is the pore fluid pressure, rf and r are the mass densities of
the fluid and the bulk porous material, respectively, and b0 is the porosity of the layer.
W ¼b0ðU� uÞ is the relative displacement of fluid with respect to the solid and U and u are
the displacements of saturant fluid and solid part of the porous medium. Coefficients bi’s
are the friction parameters. Biot [2] has derived these as

bi ¼ x=ki; ð2Þ

where x and ki are the viscosity and permeability of the pore fluid. For cylindrical pores,
the permeability is given by

ki ¼ ð8= %aa2Þdi; ð3Þ
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where %aa is the pore size and di is the shape factor and its value is one for circular cylindrical
pores. Function FðkÞ is a frequency-dependant viscosity factor, defined by

FðkÞ ¼ kTðkÞ=4f1� 2TðkÞ=ðikÞg; ð4Þ

in which

TðkÞ ¼ fber0ðkÞ þ i bei0ðkÞgfberðkÞ þ i beiðkÞg;
k ¼ %aaðorf =xÞ

1=2:

Here berðkÞ and beiðkÞ are the real and imaginary parts of the Kelvin’s function and
primes denote their derivatives.

The constitutive equations for a transversely isotropic porous medium were given by
Biot [18] and these are

txx ¼ 2B1exx þ B2ðexx þ eyyÞ þ B3ezz þ B6z;

tyy ¼ 2B1eyy þ B2ðexx þ eyyÞ þ B3ezz þ B6z;

tzz ¼ B4ezz þ B3ðexx þ eyyÞ þ B7z;

tyz ¼ 2B5eyz; tzx ¼ 2B5ezx; txy ¼ 2B1exy;

pf ¼ B6ðexx þ eyyÞ þ B7ezz þ B8z; ð5Þ

where eij are the strain components of solid matrix; tij are the total stress components of
bulk material; and z is the increament of fluid content per unit volume which is defined by
z ¼ div½b0ðu�UÞ
: B1; B2; . . . ;B8 are material coefficients. These are evaluated by
applying the method developed by Hashin and Rosen [19] and by Christensen [20] for
evaluating the material coefficients of composite materials. The equations which relate the
coefficients B1;B2; . . . ;B8 to the bulk modulus (Ks), shear modulus (ms), Young’s modulus
(Es) and the Poisson ratio (ns) of the solid grain and the bulk modulus (Kf ) of the pore
fluid, and to the porosity (b0) are

B1 ¼ m12; B2 ¼ K12 � m12;

B3 ¼ 2n31K12; B4 ¼ E33 þ 4n231K12;

B5 ¼
1

m13
;

B6 ¼ � Kf ðKs þ 4ms=3Þ
Kf þ ms þ b0ðKs þ ms=3� Kf Þ

;

B7 ¼ �Kf 1þ ð1� b0Þ 2nsðKs þ ms=3Þ � Kf

Kf þ ms þ b0ðKs þ ms=3� Kf Þ

� �
;

B8 ¼
Kf ½ðKs þ ms=3Þb0 þ ms


Kf þ ms þ b0ðKs þ ms=3� Kf Þ
;

where

E33 ¼ ð1� b0ÞEs þ
4b0ð1� b0Þð1=2� 2nsÞ2

ð1� b0Þ=Kf þ b0=ðKs þ ms=3Þ þ 1=ms

;

n31 ¼ ð1� b0Þns þ b0=2þ b0ð1� b0Þð1=2� nsÞ½1=ðKs þ ms=3Þ � 1=Kf 

ð1� b0Þ=Kf þ b=ðKs þ ms=3Þ þ 1=ms

;
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K12 ¼ Ks þ ms=3þ
b0

1=ðKf � Ks � ms=3Þ þ ð1� b0Þ=ðKs þ 4ms=3Þ
;

m13 ¼ ð1� b0Þ=½ð1þ b0Þms
;

m12 is determined from the equation

Aðm12=msÞ2 þ 2Bðm12=msÞ þ C ¼ 0;

where

A ¼ �3b0ð1� b0Þ2 � ðZs þ b03Þð1þ b0ZsÞ;
B ¼ 3b0ð1� b0Þ2 þ ð1� b0ÞðZs � 1þ 2b03Þ=2� b0=2ðZs þ 1Þð1� b03Þ;
C ¼ �3b0ð1� b0Þ2 þ ð1� b0Þð1� b03Þ:

For two-dimensional wave motion in xz-plane, we can assume the plane harmonic
solutions of equation (1) of the form

ux ¼ a1 exp½ioðt � x=c � qzÞ
;
uz ¼ a3 exp½ioðt � x=c � qzÞ
;
Ux ¼ b1 exp½ioðt � x=c � qzÞ
;
Uz ¼ b3 exp½ioðt � x=c � qzÞ
; ð6Þ

where a1; a3; b1 and b3 are the wave amplitudes and c is the phase velocity.
Substitution of these solutions into equation (1) gives a set of four simul-

taneous equations in four unknowns a1; a3; b1 and b3: The existence of their non-trivial
solution leads to a cubic equation in q2 and is of the form

T0q6þT1q
4þT2q

2þT3 ¼ 0; ð7Þ

where

T0 ¼ c11B5ðB2
7 � B4B8Þ; T1 ¼ T11 þ T12=c2;

T2 ¼ T21 þ T22=c2 þ T23=c4; T3 ¼ T31 þ T32=c2 þ T33=c4 þ T34=c6;

T11 ¼ c11ðB4B8 � B2
7Þrþ c11rB5B8 þ 2c11rf B5B7 þ c11c33B4B5 þ r2f ðB2

7 � B4B8Þ;
T12 ¼ c11ð2B1 þ B2ÞðB2

7 � B4B8Þ � c33B4B5B8 þ c33B5B2
7 þ c11ðB2

3B8 þ 2B3B5B8Þ
� c11B6ð2B3B7 þ 2B5B7 � B4B6Þ;

T21 ¼ �c11r2B8 � 2c11rrf B7 � c11c33rðB4 þ B5Þ þ c11r2f B5 þ c33r2f B4 þ rr2f B8 þ 2B7r3f ;

T22 ¼ rðc11B5B8 þ c33B4B8Þ þ rc11ð2B1 þ B2ÞB8 þ 2c11rf B7ð2B1 þ B2Þ � c33rB2
7

þ c11c33B4ð2B1 þ B2Þ þ c33rB5B8 � 4r2f B5B8 � 2rf ðB3 þ B5Þðc11B6 þ c33B7Þ
� 2r2f B3B8 � c11c33ðB2

3 � 2B3B5Þ þ 2c33rf B4B6 þ 2r26B6B7 � c11B2
6r;

T23 ¼ c33B2
7ð2B1þB2Þ�ðc11B5þc33B4Þfð2B1þB2ÞB8�B2

6g þ c33ðB3 þ B5ÞfB3B8 � 2B7B6g;
T31 ¼ r2c11c33 � rr2f ðc11 þ c33Þ þ r4f ;

T32 ¼rc33fc11ðB5þ2B1 þ B2Þ � rB8�2rf B6gþr2f frB8þ2rf B6 þ c11ð2B1þB2Þ þ c33B5g;
T33 ¼ c33rB8ðB5 þ 2B1 þ B2Þ þ c11c33B5ð2B1 þ B2Þ þ r2f fB2

6 � B8ð2B1 þ B2Þg
þ c33B6ð2rf B5 � rB8Þ;
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T34 ¼ c33B5fB2
6 � B8ð2B1 þ B2Þg; c11 ¼ c1rf =b

0 � iFb1=o;

c33 ¼ c3rf =b
0 � iFb3=o: ð8Þ

The roots of equation (7) are, in general, complex. We denote these roots by qðnÞ;
n ¼ 1; 2; . . . ; 6: Three roots with positive real parts will correspond to the waves travelling
in positive z direction and the other three roots with negative real part will correspond to
the waves travelling in negative z direction. We order the six roots qðnÞ; n ¼ 1; 2; . . . ; 6
such that qð1Þ; qð2Þ; qð3Þ correspond to upgoing waves, i.e., along negative z direction and
qð6Þ; qð5Þ; qð4Þ correspond to downgoing waves, i.e., along positive z direction. These are
quasi-Pf ; quasi-Ps and quasi-SV waves respectively. Corresponding to these values of
qðnÞ; n ¼ 1; 2; . . . ; 6; the wave amplitudes a1; a3; b1 and b3 can be obtained. We denote the
corresponding eigen vectors by a1ðnÞ; a3ðnÞ; b1ðnÞ and b3ðnÞ; n ¼ 1; 2; . . . ; 6: These are
given by

a1ðnÞ ¼ X1ðnÞ=XðnÞ; a2ðnÞ ¼ X2ðnÞ=X ðnÞ;
b1ðnÞ ¼ X3ðnÞ=XðnÞ; b3ðnÞ ¼ X4ðnÞ=X ðnÞ;

where

X1ðnÞ ¼ q4ðnÞc11ðB4B8 � B2
7Þ

þ q2ðnÞfB8ðB5c11 þ B4c33Þ=c2 � c11B8r� 2c11rf B7 þ c33ðc11B4 � B2
7=c33Þg

þ fc33B8=c2ðB5=c2 � rÞ � c11c33ðB5=c2 � rÞ þ r2f ðB8=c2 þ c11Þg;
X2ðnÞ ¼ q3ðnÞc11=cðB6B7 � B3B8 � B5B8Þ þ qðnÞ=cf½B7ðrf þ B6=c2Þ

� B8ðB3 þ B5Þ=c2
c33 þ c11rf B6 þ r2f B8 þ c33c11ðB3 þ B5Þg;
X3ðnÞ ¼ q4ðnÞrf ðB2

7 � B4B8Þ þ q2ðnÞfc33B4ðrf þ B6=c2Þ � ðc33B7 þ rf B8ÞðB3 þ B5Þ=c2

þ rf B8ðr�B5=c2Þþrf B7ðrf þB6=c2Þþrf B2
7g þ ðrf þ B6=c2Þfr2f � c33ðr� B5=c2Þg;

X4ðnÞ ¼ q3ðnÞ=cfc11ðB4B6 � B3B7 � B5B7Þ þ ðB4B8 � B2
7Þrf g þ qðnÞ=cf�c11rf ðB3 þ B5Þ

� c11ðr� B5=c2ÞgB6 þ rf B8ðB3 þ 2B5Þ=c2 � rrf B8 � rf B7ðrf þ B6=c2Þ;

and

XðnÞ ¼ p½fX1ðnÞg2 þ fX2ðnÞg2 þ fX3ðnÞg2 þ fX4ðnÞg2
: ð9Þ

The displacement components can be written as

ux ¼
X6
n¼1

fna1ðnÞ exp½ioðt � x=c � qðnÞz
;

uz ¼
X6
n¼1

fna3ðnÞ exp½ioðt � x=c � qðnÞz
;

Ux ¼
X6
n¼1

fnb1ðnÞ exp½ioðt � x=c � qðnÞz
;

Uz ¼
X6
n¼1

fnb3ðnÞ exp½ioðt � x=c � qðnÞz
; ð10Þ

where fn are relative excitation factors.
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3. FORMULATION OF THE PROBLEMS AND THEORY OF TRANSFER MATRIX

Case 1. We consider a transversely isotropic porous layer of thickness L overlying an
elastic solid half-space and underlying a fluid half-space, as shown in Figure 1. A wave in
the fluid half-space making an angle of incidence y at the face z ¼ 0 will transmit quasi Pf ;
quasi-Ps and quasi-SV waves in the layer. These three waves are reflected back by the face
z ¼ L of the layer. In addition to these waves, two types of waves (P and SV ) will be
transmitted to the elastic half-space.

Let VðzÞ be the column vector made up of three components (ux; uz;Wz) and the three
components (tzz; txz; pf ) in the layer, A be the 6� 1 column vector containing amplitudes
of six waves propagating in the layer:

VðzÞ ¼ ½ux; uz;Wz; tzz; tzx; pf 
T;
A ¼ ½ðf1 þ f6Þ; ðf1 � f6Þ; ðf2 þ f5Þ; ðf2 � f5Þ; ðf3 þ f4Þ; ðf3 � f4Þ
T:

The vector VðzÞ can be expressed as the function of A using the following equation:

VðzÞ ¼ ½GðzÞ
A; ð11Þ

where [GðzÞ] is a 6� 6 matrix.
At z ¼ L; VðLÞ ¼ ½GðLÞ
A and at z ¼ 0; Vð0Þ ¼ ½Gð0Þ
A: Therefore,

Vð0Þ ¼ ½Gð0Þ
½GðLÞ
�1
VðLÞ;

or

Vð0Þ ¼ ½T 
VðLÞ; ð12Þ

where ½T 
 ¼ ½Gð0Þ
½GðLÞ
�1 is called transfer matrix which enables us to relate the
displacement–stress field vector at z ¼ 0; with that at the face z ¼ L: The entries of [T ] are
given in Appendix A. The inverse of the matrix [GðLÞ] is obtained by partition method [21]
in order to get the matrix [T ].

In the fluid, the acoustic field is described by the vector

V ¼½p; v
T; ð13Þ

where p and v are the pressure and normal component of velocity in fluid. The surface
impedance Z is the transfer function between pressure and velocity in fluid and it is defined
as a ratio of pressure to particle velocity, i.e.,

Z ¼ p=v; ð14Þ
Fluid  

Z = 0 

Z = L

Transversely Isotropic Porous layer 

Elastic Solid Half-space 

4.
3.

2.
1.

θ

Figure 1. A transversely isotropic porous layer overlying the solid bedrock.
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i.e., for a given applied pressure, the particle velocity is inversely proportional to the
surface impedance.

In elastic half-space, the expressions for potential can be written as

f ¼ f0 expð�igzÞ; c ¼ c0 expð�ihzÞ:

Here, the factor expfiðot � sxÞg is omitted for the sake of brevity and s ¼ k sin y;

g ¼ ðo2=a2 � s2Þ1=2; h ¼ ðo2=b2 � s2Þ1=2;

a and b are the velocities of P and SV waves respectively.
The displacement-stress field in the elastic solid half-space is described by vector

W1 ¼ ½ux; uz; tzz; tzx
T: ð15Þ

The vector W1 can be written as

W1 ¼ e½ 

f0

c0

" #
; ð16Þ

where ½e
 is a 4� 2 matrix.

4. BOUNDARY CONDITIONS AND SURFACE IMPEDANCE

The interface between porous layer and elastic half-space is considered to be an
imperfect interface, therefore, the boundary conditions at such interface were defined by
Vashisth et al. [16] and these are

uz2 ¼ uz1; Wz2 ¼ 0; tzz2 ¼ tzz1;

tzx2 ¼ tzx1; cðux1 � ux2Þm=b ¼ ð1� cÞtzx1; ð17Þ

where c is the bonding parameter. The value of c is one for the case of welded contact and
zero for smooth contact. The intermediate values of c correspond to the loose contact. b is
the shear wave velocity in elastic solid half-space. Subscripts 1 and 2 correspond to the
values obtained at the interface between solid half-space and porous layer, respectively, as
shown in Figure 1.

The boundary conditions at the interface between fluid and porous layer are

ð1� b0Þuz3 þ b0Wz3 ¼ u4; tzz3 ¼ �ð1� b0Þp4; ð18; 19Þ

pf 3 ¼ �b0p4; tzx3 ¼ 0: ð20; 21Þ

Subscripts 3 and 4 represent the values of quantities in the porous layer and fluid half-
space respectively, at the interface.

An interfacial matrix ½Z
6�4 relating V2 to W1 is obtained from the boundary conditions
(17)–(21) and we write V2 ¼ ½Z
W1:

Therefore,

V3 ¼ ½T 
½Z
½e

f0

c0

" #
or V3 ¼ ½x


f0

c0

" #
;

where

½x
 ¼ ½T 
½Z
½e
: ð22Þ

and is given in Appendix B.
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Using equation (22), equations (18)–(20) can be expressed in the form of f0 and c0 as

½ð1� b0Þx21 þ b0x31
f0 þ ½x22ð1� b0Þ þ b0x32
c0 ¼ p4=ioZ; ð23Þ

x41f
0 þ x42c

0 ¼ �ð1� b0Þp4; x61f
0 þ x62c

0 ¼ �b0p4: ð24; 25Þ

For the non-trivial solution, the determinant of the coefficients f0 and c0 must vanish
which gives the expression for impedance as

Z ¼ðx41x62 � x42x61Þ=f½x22ð1� b0Þ þ b0x32
½�x41b
0 þ ð1� b0Þx61


� ½x21ð1� b0Þ þ b0x31
½x42b0 � ð1� b0Þx62
gio: ð26Þ

This expression of impedance has been obtained by using the technique of transfer
matrix. The transfer matrix method is used to transfer the boundary conditions from outer
surface of the layered medium to the other via matrix multiplication. In other techniques,
computation of surface impedance for the considered model involves the expansion of a
determinant of order nine and that too over complex field. Thus the codes used for
numerical computation of surface impedance from expression (26) are certainly efficient
than those without using matrix method.

Case 2. Now we consider a two-layered transversely isotropic porous medium, backed
by a rigid floor. The top layer is in contact with fluid half-space, as shown in Figure 2. Let
bI and bII are the porosities of two layers respectively. A plane wave is incident from fluid
on face A of the medium.

The presence of rigid surface at the back of the layered medium requires that normal
component of fluid velocity and z- and x-components of frame velocity must vanish
at surface C. The boundary conditions at the fluid–porous layer interface are same
as specified in equations (17). The global transfer matrix for this layered medium
will be ½T 
 ¼ ½TI
½Tt
½TII
; where ½TI
 and ½TII
 are transfer matrices for layers
I and II, respectively, and ½Tt
 is the transition matrix and is obtained by the
continuity of displacement–stress field vector at interface B. The expression for
the surface impedance (Z) can be obtained by repeating the same steps as in case 1 and
is given by

Z ¼ðD5D8 � D6D7Þ=½ð1� bIÞ2ðD2D7 � D1D8Þ þ bIð1� bIÞðD6D1 � D2D5

� D3D8 þ D4D7Þ þ b2I ðD3D6 � D4D5Þ
;
Figure 2. A two-layered transversely isotropic medium backed by a rigid floor.
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where

D1 ¼ t24t55 � t25t54; D2 ¼ t26t55 � t25t56; D3 ¼ t34t55 � t35t54;

D4 ¼ t36t55 � t35t56; D5 ¼ t44t55 � t45t54; D6 ¼ t46t55 � t45t56;

D7 ¼ t64t55 � t65t54; D8 ¼ t66t55 � t65t56;

tij are the elements of global transfer matrix [T ].

5. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations are done for the above-mentioned two cases, one for low-
frequency and other in high-frequency range.

5.1. SEDIMENTARY LAYER BETWEEN WATERANDELASTIC BEDROCK

This model finds its application in seismological studies. The sedimentary layer of the
bottom is modelled as anisotropic porous layer. A contrast in the acoustic impedance gives
rise to seismic reflection. Therefore the study is used to identify mismatches at the
interface. The primary object of this paper has been to study the reflection of energy
through ocean bottoms. Reflection coefficient can be expressed in a very simple way
through impedance of media. The use of impedance simplifies the boundary conditions
and makes it much easier to obtain solutions of all kinds of boundary-value problems
including the reflection of plane waves. The two boundary conditions can be replaced by
the single condition, i.e.,

Z ¼ p=v: ð27Þ
The upper fluid half-space is considered as water and the underlying sedimentary layer is

portrayed as transversely isotropic porous solid layer. The lower half-space is considered
to represent elastic bedrock of the sediments under ocean. The values of physical
properties of the sediments, used to calculate the surface impedance, are taken from
Yammamato [22]. These are (in C.G.S. units)

Ks=(533� 1011, 1599� 109) ms=(20� 1011, 40� 109)
Es=(5332� 1011, 1064� 108) ns ¼ 033
rs ¼ 265 rf ¼ 1025
Kf ¼ 23� 1010 b0 ¼ 030
x ¼ 10� 10�4 x ¼ 10� 10�4

In elastic half-space

l ¼ 25� 1011; m ¼ 37� 1011; r ¼ 26:
The constant sound speed in water is taken as 1.37� 105 cm/s. Results for this model are

computed in the low-frequency range, which is valid assumption for seismological studies.
The fluid-layered bottom interface is presenting complex impedance Z to incident wave.

The real part of surface impedance represents surface resistance and imaginary part
corresponds to the reactance. Figures 3(a–c) depict the magnitude of complex surface
impedance at different levels of thickness of sedimentary layer as a function of the
frequency. The results are in qualitative agreement with those existing in the text of seismic
waves [23]. The pattern of the variation of the surface impedance with frequency is of same
nature as that of amplitude spectrum mentioned in the text. The interface between
sedimentary layer and elastic bedrock is considered to be imperfect and results for two



Figure 3. Surface impedance(absolute value) versus frequency at incidence angle 158 and thickness of layer:
(a) 05 km; (b) 04 km; (c) 03 km.
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particular cases are shown. The first case is the particular case when the interface between
sedimentary layer and elastic solid half-space is an ideal interface (C ¼ 10), i.e., the
situation when component of tangential displacement is continuous. In the second case the
results have been shown for a loosely bonded interface (C ¼ 05). It is added that
numerical calculations have been made for the other values of Cð05C51Þ also, which do
not vary significantly from the case (C ¼ 05) and hence are avoided to be displayed. In the
frequency range of (10–100Hz), the behavior of jZj is not much different for the perfect
and imperfect boundary(see Figure 3(a)). As the frequency increases beyond 100Hz, effect
of loose boundary is felt clearly. It is noticed that the magnitude of surface impedance is
more in case of loose contact than that for the case of welded contact. This behavior of Z

follows that energy is being trapped at the loose boundary and hence less energy is
reflected back in the medium of incidence, i.e., fluid. For relatively thin layers
(Figures 3(b,c)), the magnitude of surface impedance for loosely bonded case is higher
than that for perfectly bonded case in the frequency range (10–100Hz). The reason for this
may be understood from the fact that the effect of the slip at the interface is more
significant when the layer’s thickness is relatively small.
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In the frequency range 20–100Hz, the real part of surface impedance is noticeably
different for loosely bonded and welded interface, see Figure 4(a). With the decrease of
01 km in the thickness of the sedimentary layer, the surface resistance changes
significantly. At the frequency near 12Hz, Re(Z) for loose contact is unusually higher
in comparison to perfectly bonded case(see Figures 4(b,c)). The surface impedance is seen
to be sensitive to changes in the thickness of sedimentary layer. This may be understood
from the fact that the small changes in the thickness of sedimentary layer can result in a
relatively large change in the gradient of the velocity profile. In particular, by changing the
thickness of sedimentary layer, we are changing the wave guide-like nature of the
sedimentary layer and this affects the surface impedance. As frequency increases above
100Hz, Re(Z) becomes negligibly small which implies that in higher frequency range, it is
the surface reactance which dominates and most of the energy is reflecting back. Most
deep-water surfacial sea floor sediments have sound velocities less than that in overlying
water. The echo sounder records very strong reflections in these areas because of sufficient
impedance mismatch created at the boundary.

Figures 5(a–c) depict the magnitude of the surface impedance at a particular frequency
of 20Hz for thickness of the layer equal to 0.5, 0.4 and 0.3 km and for the whole possible
Figure 4. Surface impedance (real part) versus frequency at incidence angle 158 and thickness of layer:
(a) 05 km; (b) 04 km; (c) 03 km.



Figure 5. Surface impedance (absolute value) versus angle of incidence at frequency 20Hz and thickness of
layer: (a) 05 km; (b) 04 km; (c) 03 km.
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range of the angle of incidence. As noted earlier, jZj in case of loosely bonded interface is
greater than that in perfect bonding case. This variation is more significant near the peaks
at 198 and 628 that correspond to critical angles in Figure 5(a). Angles at which the surface
impedance is approaching zero correspond to the angles at which total internal reflection
occurs. To study the variation of the surface impedance with the thickness of layer, the
results have been calculated at three levels of thickness (0.5, 0.4 and 0.3 km). The behavior
of surface impedance is considerably different with varying thickness. The position of
critical angle also varies as thickness of layer is varied. The results for nearly smooth
interface (C ¼ 01) have also been computed in these cases.

In Figures 6(a–c), the variation of the real part of surface impedance is shown for three
different levels of thickness. Rapid variation before the angle of incidence 308 is noticed.
As the angle of incidence is increased further, Re(Z) approaches to zero. It is only the
imaginary part, i.e., reactance which contributes and the boundary is said to be purely
reactive. The results for nearly smooth interface (C ¼ 01) have also been computed in
these cases.

Eliminating the effect of porous layer by considering its thickness zero and neglecting
the effect of elastic solid half-space, the problem reduces to the case of incidence at the free



Figure 6. Surface impedance (real part) versus angle of incidence at frequency 20Hz and thickness of layer:
(a) 05 km; (b) 04 km; (c) 03 km.
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surface of the fluid half-space. It implies automatically from equation (26) that Z ¼ 0; i.e.,
there is no energy dissipation in this case. The whole energy that is incident on fluid half-
space is reflected back in the fluid, as it should be.

5.2. A TWO-LAYEREDANISOTROPIC POROUS LAYEREDMEDIUM

The model has its applications in noise control in ducts and in the study of composites.
In acoustics there is a class of anisotropic media for which the boundary condition (27) is
not approximate but exact. The surfaces satisfying this condition are called locally reacting
surfaces. This type of surfaces is met quite frequently in architectural acoustics. Here, two
layers of plastic foam are modelled as transversely isotropic porous layered medium. We
adopted the values of physical parameters for the two layers of foam as given by Allard
et al. [7] and determined the values of the material coefficients used in this paper, by using
the relations mentioned therein. The values of physical parameters for transversely
isotropic porous medium can be obtained from those for isotropic one by the relations

B2 þ 2B1

B4
� 1 ¼ 2e;

B1

B5
� 1 ¼ 2g;
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and

ðB3 þ B5Þ2 � ðB4 � B5Þ2

B4ðB4 � B5Þ
¼ 2d:

For computational purpose we take the values of e; d and g as

e ¼ 0110; d ¼ �0035 and g ¼ 0255:

Using these values of material coefficients, the surface impedance is computed in the
high-frequency range. The real and imaginary parts of surface impedance are shown in
Figure 7. For the verification of transfer matrix determined in this paper, justification of
numerical computation and to study the effects of transversely isotropy, the calculations
have been done for the case when both the porous layers are isotropic, i.e., by setting the
values of e; d and g to be zero. The results in this situation should be in agreement with
those obtained by Allard et al. [7] and these are found so. The transverse isotropy of layers
is found to increase both real and imaginary parts of the surface impedance. It follows that
the more energy is dissipated within the anisotropic layers.

6. CONCLUSION

Wave propagation in layered porous media is studied by observing the behavior of
surface impedance with frequency and angle of incidence. Detailed algebraic calculations
have been made to obtain the compact analytical expressions of surface impedance at
fluid–anisotropic porous layer interface in both of cases using transfer matrix. By the use
of transfer matrix, we obtain a compact expression for surface impedance, which is easier
to be computed numerically even when we are working in the complex field. The
advantage with transfer matrix in studies of multi-layered medium is that it provides a
better survey of whole expression which otherwise become very large and complicated by
direct approach. The magnitude and real part of surface impedance with varying
frequency and for whole range of angle of incidence is studied. This is observed that
Figure 7. Surface impedance varying with frequency.
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surface impedance shows the same behavior in different but small frequency pockets. The
magnitude of surface impedance is sensitive to the thickness of layer.

The anisotropy of the material considered is found to affect the surface impedance. It is
shown in one case that transverse isotropy increases the surface impedance.

The assumption of loosely bonded interface instead of perfect one in first case is
reasonable and more realistic for layered structures having fluid-saturated porous layers.
The results are calculated for different degree of bonding ranging from no bonding to full
bonding between the media. Imperfectness of the interface is found to affect the reflection–
transmission phenomena considerably. The results show consistency with the physical
laws. The increased magnitude of surface impedance in case of imperfect interface shows
that there is loss of energy due to loose bonding at the interface.
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APPENDIX A

t11 ¼ ½a1ð1Þcos y1 � Ha1ð2Þcos y2 þ H�a1ð3Þcos y3
=M;

t21 ¼ i½a3ð1Þsin y1 � Ha3ð2Þsin y2 þ H�a3ð3Þsin y3
=M;

t31 ¼ i½b3ð1Þsin y1 � Hb3ð2Þsin y2 þ H�b3ð3Þsin y3
=M;

t41 ¼ ½�C1 cos y1 þ HC2 cos y2 � H�C3 cos y3
=M;

t51 ¼ i½�D1 sin y1 þ HD2 sin y2 � H�D3 sin y3
=M;

t61 ¼ ½�P1 cos y1 þ HP2 cos y2 � H�P3 cos y3
=M;

t12 ¼ i½a1ð1Þsin y1 � Ga1ð2Þsin y2 þ G�a1ð3Þsin y3
=N;

t22 ¼ ½a3ð1Þcos y1 � Ga3ð2Þcos y2 þ G�a3ð3Þcos y3
=N;

t32 ¼ ½b3ð1Þcos y1 � Gb3ð2Þcos y2 þ G�b3ð3Þcos y3
=N;

t42 ¼ i½�C1 sin y1 þ GC2 sin y2 � G�C3 sin y3
=N;

t52 ¼ ½�D1 cos y1 þ GD2 cos y2 � G�D3 cos y3
=N;

t62 ¼ i½�P1 sin y1 þ GP2 sin y2 � G�P3 sin y3
=N;

t13 ¼ i½�a1ð1Þsin y1Q1=N þ a1ð2Þsin y2Q2 � a1ð3Þsin y3Q3
;

t23 ¼ ½�a3ð1Þcos y1Q1=N þ a3ð2Þcos y2Q2 � a3ð3Þcos y3Q3
;

t33 ¼ ½�b3ð1Þcos y1Q1=N þ b3ð2Þcos y2Q2 � b3ð3Þcos y3Q3
;

t43 ¼ i½C1 sin y1Q1=N � C2 sin y2Q2 þ C3 sin y3Q3
;

t53 ¼ ½D1 cos y1Q1=N � D2 cos y2Q2 þ D1 cos y3Q3
;

t63 ¼ i½P1 sin y1Q1=N � P2 sin y2Q2 þ P3 sin y3Q3
;

t14 ¼ ½�a1ð1Þcos y1R1=M � a1ð2Þcos y2R2 þ a1ð3Þcos y3R3
;

t24 ¼ i½�a3ð1Þsin y1R1=M � a3ð2Þsin y2R2 þ a3ð3Þcos y3R3
;

t34 ¼ ½�b3ð1Þsin y1R1=M � b3ð2Þsin y2R2 þ b3ð3Þsin y3R3
;
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t44 ¼ ½C1 cos y1R1=M þ C2 cos y2R2 � C3 cos y3R3
;

t54 ¼ i½D1 sin y1R1=M þ D2 sin y2R2 � D3 sin y3R3
;

t64 ¼ ½P1 cos y1R1=M þ P2 cos y2R2 � P3 cos y3R3
;
t15 ¼ i½�a1ð1Þsin y1S1=N þ a1ð2Þsin y2S2 � a1ð3Þsin y3S3
;

t25 ¼ ½�a3ð1Þcos y1S1=N þ a3ð2Þcos y2S2 � a3ð3Þcos y3S3
;

t35 ¼ ½�b3ð1Þcos y1S1=N þ b3ð2Þcos y2S2 � b3ð3Þcos y3S3
;

t45 ¼ i½C1 sin y1S1=N � C2 sin y2S2 þ C3 sin y3S3
;

t55 ¼ ½D1 cos y1S1=N � D2 cos y2S2 þ D3 cos y3S3
;

t65 ¼ i½P1 sin y1S1=N � P2 sin y2S2 þ P3 sin y3S3
;

t16 ¼ ½�a1ð1Þcos y1L1=M þ a1ð2Þcos y2L2 � a1ð3Þcos y3L3
;

t26 ¼ i½�a3ð1Þsin y1L1=M þ a3ð2Þsin y2L2 � a3ð3Þsin y3L3
;

t36 ¼ i½�b3ð1Þsin y1L1=M þ b3ð2Þsin y2L2 � a3ð3Þsin y3L3
;

t46 ¼ ½C1 cos y1L1=M � C2 cos y2L2 þ C3 cos y3L3
;

t56 ¼ i½D1 sin y1L1=M � D2 sin y2L2 þ D3 sin y3L3
;

t66 ¼ ½P1 cos y1L1=M � P2 cos y2L2 þ P3 cos y3L3


where

X ¼ ½D3b3ð2Þ � D2b3ð3Þ
=D3; Y ¼ ½C3P2 � C2P3
=P3;

M ¼ a1ð1Þ þ C1R1 þ P1L1;

Q2 ¼ ½1=X þ GQ1=N
; N ¼ a3ð1Þ � b3ð1ÞQ1 � D1S1;

G ¼ ½b3ð1ÞD3 � b3ð3ÞD1
=XD3;

H ¼ ½P3C1 � C3P1
=YP3; H� ¼ ½P2C1 � C2P1
=YP3;

Q3 ¼ ½D2=XD3 þ G�Q1=N
;
G� ¼ ½b3ð1ÞD2 � b3ð2ÞD1
=XD3; S2 ¼ ½b3ð3Þ=XD3 þ GS1=N
;
L2 ¼ ½C3=YP3 þ HL1=M
;
L1 ¼ ½a1ð2ÞC3 � a1ð3ÞC2
=YP3; R1 ¼ ½�P3a1ð2Þ þ P2a1ð3Þ
=YP3;

R2 ¼ ½1=Y � HR1=M
;
Q1 ¼ ½D3a3ð2Þ � a3ð3ÞD2
=XD3; S1 ¼ ½a3ð2Þb3ð3Þ � a3ð3Þb3ð2Þ
=XD3;

R3 ¼ ½P2=YP3 � H�R1=M
; L3 ¼ ½C2=YP3 þ H�L1=M
;
S3 ¼ ½b3ð2Þ=XD3 þ G�S1=N
; Cj ¼ i½B4lja3ð jÞ þ a3ð jÞB3 þ b1ð jÞB7 þ b3ðjÞB7lj
;
Dj ¼ i½B4lja1ð jÞ þ a3ð jÞB5
;
Pj ¼ i½B3a1ð jÞ þ a3ð jÞB7lj þ b1ð jÞB8 þ b3ð jÞB8lj
;
lj ¼ cqð jÞ; yj ¼ oqð jÞL; o the frequency of incident wave ð j ¼ 1; 3Þ;



A. K. VASHISHTH AND P. KHURANA594
APPENDIX B

xj1 ¼ �isxj � igyj þ ½lðg2 þ s2Þ � 2mg2
zj þ 2msgpj ; j ¼ ð1; 2; . . . ; 6Þ
xj2 ¼ ihxj � isyj � 2mshzj � mðs2 � h2Þpj;

where

xj ¼ tj1 þ ðtj4 � tj6Þt51=ðt56 � t54Þ;
yj ¼ ðtj2 þ tj3Þ þ ðtj4 � tj6Þðt52 þ t53Þ=ðt56 � t54Þ;
zj ¼ ðtj4t56 � tj6t54Þ=ðt56 � t54Þ;
pj ¼ ðtj4 � tj6Þt55=ðt56 � t54Þ þ tj1ið1� cÞb=ðomcÞ þ tj5:
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